# THE LAW OF SINES

Possible Duplicate: Prove that \$sin(2A)+sin(2B)+sin(2C)=4sin(A)sin(B)sin(C)\$ when \$A,B,C\$ are angles of a triangle Prove trigonometry identity?

If \$A\$, \$B\$, and \$C\$ are to lớn be taken as the angles of a triangle, then I beg someone lớn help me the proof of\$\$sin A + sin B + sin C = 4 cos fracA2 cos fracB2 cos fracC2.\$\$Thanks!

Bạn đang xem: The law of sines I usually find these things easiest to bởi with complex exponentials, rather than remembering a zoo of formulas for trigonometric functions. With \$C=pi-A-B\$, we have

\$\$eginaligndef r#1#2gamize.vnrm e^gamize.vnrm i#1#2gamize.vnrm e^-gamize.vnrm i#1defco#1 r#1+defsi#1 r#1-defcop#1left(co#1 ight)defsip#1left(si#1 ight)&4cosfrac A2cosfrac B2cosfrac C2\=½copA/2copB/2copC/2\=½copA/2copB/2cop(pi-A-B)/2\=½gamize.vnrm icopA/2copB/2sip(-A-B)/2\=½gamize.vnrm ileft(-sip A-sip B-sip(A+B) ight)\=½gamize.vnrm ileft(sip A+sip B+sip(pi-A-B) ight)\=½gamize.vnrm ileft(sip A+sip B+sip C ight)\=&sin A+sin B+sin C;.endalign\$\$

cốt truyện
Cite
Follow
answered Aug 9, 2012 at 23:14 jorikijoriki

Xem thêm: Màu Sơn Móng Tay Màu Đỏ Rượu Vang, Sơn Móng Tay Màu Đỏ Rượu

\$endgroup\$
4
1
\$egingroup\$ +1 for giving a general strategy for doing this type of thing, rather than just the straight proof. \$endgroup\$
–user22805
Aug 10, 2012 at 0:47
địa chỉ a comment |
4

Xem thêm: Top 10 Bài Văn Mẫu Tả Lại Khu Vườn Trong Một Buổi Sáng Đẹp Trời (16 Mẫu)

\$egingroup\$
How about a proof with a geometric flavor?

Let \$a\$, \$b\$, \$c\$ be the sides that oppose angles \$A\$, \$B\$, \$C\$, respectively. By the Law of Sines, \$\$fracasin A = fracbsin B = fraccsin C = d\$\$where \$d\$ is the circumdiameter of the triangle. If we conveniently scale the triangle so that \$d=1\$, then we can say simply that \$\$a = sin A qquad b = sin B qquad c = sin C\$\$This is a common simplification technique, as it nicely blurs the distinction between edges and angles, giving us things lượt thích this wonderfully-symmetric area formula:\$\$gamize.vnrmArea ; = frac12a b c qquad left(;=frac12absin C =frac12acsin B = frac12bcsin A ight)\$\$

(When you have this mindset, you can"t look at the expression "\$sin A + sin B + sin C\$" và not think, "That"s perimeter!" ... Và then you find yourself pursuing proof approaches like this one.) In what follows, I"ll continue to lớn use "\$a\$", "\$b\$", "\$c\$", because they"re more compact than "\$sin A\$", etc, but you should read them as "\$sin A\$", etc.

By the Law of Cosines,

\$\$cosC = fraca^2+b^2-c^22ab\$\$

By the half-angle formula for cosines,

\$\$cos^2fracC2 = frac1+cosC2=fraca^2+2ab+b^2-c^24ab=frac(a+b)^2-c^24ab=frac(a+b+c)(a+b-c)4ab\$\$

Likewise for \$cos(A/2)\$ & \$cos(B/2)\$, so that\$\$cos^2fracA2 cos^2fracB2 cos^2fracC2=frac(a+b+c)^24a^2b^2c^2cdot frac(a+b+c)(-a+b+c)(a-b+c)(a+b-c)16\$\$The conveniently-separated second factor just happens to be Heron"s formula for the square of the area of the triangle; re-writing the area in wonderfully-symmetric khung gives ...\$\$cos^2fracA2 cos^2fracB2 cos^2fracC2=frac(a+b+c)^24a^2b^2c^2cdot left(frac12abc ight)^2 = frac116left(a+b+c ight)^2\$\$

We can now clear the fraction, expand the symbols "\$a\$", "\$b\$", "\$c\$" as the sines they represent, và take square roots (secure in the knowledge that none of the trig values is negative), so that\$\$4 cos fracA2 cosfracB2 cosfracC2 = sin A + sin B + sin C\$\$as desired.